Research Article

Synthesis and biological evaluation of novel [¢]-aryl-N-thiazolyl-benzamides

Mai A. Mourad, Mohamed Abdel-Aziz, Gamal El-Din A. Abuo-Rahma and Omar M. Sokar

Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, *TIOIA* Minia, Egypt

Abstract

Twelve out of thirty-six thiazole-carboxamide derivatives were selected by the National Cancer Institute (NCI) for *in vitro* anticancer screening. Among these, five derivatives ($\P \P - \P \circ, \P \lor, \P \land$) exhibited significant anticancer activity in the primary assay at concentration $1 \cdot 1^\circ$ M, and further tested against a panel of sixty human tumor cell lines. Compounds $\P t$, $\P \circ$, $\P \lor$ and $\P \land$ exhibited selective remarkable activity against all Leukemia cell lines, Lung cancer cell line NCI-H $\circ \P \lor$ and Renal cancer cell line UO- $\P 1$.

Keywords: Synthesis, anticancer activity, ^Y,[£]-disubstituted thiazoles, thiazole-carboxamide, galloyl derivatives

Introduction

Among pharmacologically important heterocyclic compounds, thiazole and its derivatives have been well known in pharmaceutical chemistry because of their wide spectrum of biological activities^[1, Y].

Thiazol-Y-yl-benzamides act as glukokinase activators, which are currently under investigation as potential antidiabetic agents by many pharmaceutical companies $[^{r,v]}$, and have been

recently proposed as a novel promising class of adenosine A_1 and A_r receptor antagonists ^[A, 1].

The antitumor activity of $(, \xi$ -disubstituted thiazoles containing amide functional group was the subject of many researchers^[1, , , 1]. Thiazole-carboxamide derivative II has been identified as a CDK_Y-selective inhibitor and has been selected to enter clinical development as an antitumor agent, and has shown superior antitumor efficacy to both flavopiridol and related analogues^[11].

Chemistry

The general methods for synthesis of target ξ aryl- Υ -(arylcarboxamido)- Υ , Υ -thiazoles Υ - Υ A are depicted in Scheme Υ . The synthesis of compounds Υ - Υ Υ was achieved by a condensation reaction of Υ -amino- ξ -arylthiazoles Λ - Λ with appropriate acyl chlorides `a-f yielding the corresponding amides "-``. On the other hand, mono- di-, and tri-hydroxy derivatives ``-`` were synthesized by treatment of the ester derivatives `-`` with hydrazine hydrate.

Scheme 1. Synthesis of 4-aryl-N-thiazolyl-benzamides 3-38

Evaluation of anticancer activity in vitro

A series of ξ -ary 1- γ -(arylcarboxamido)- γ , γ thiazoles "-"A were submitted to NCI for antitumor activity evaluation. Compounds [£], ^o, 7, 9, 1., 17, 12, 77, 72, 70, 77, and 7A were selected for evaluation at single concentration of \mathcal{V}° M towards panel of sixty cancer cell lines. The human tumor cell lines were derived from nine different cancer types: leukemia, melanoma, lung, colon, CNS, ovarian, renal, prostate and breast cancers. Primary anticancer assays were performed according to the US NCI protocol, which was described elsewhere [1^{1}]. Compounds ξ , 0, 7, 9, 1° , 1° , and 1° have not reduced the growth of any cell lines by "Y". or less, are inactive. Therefore, only five compounds TT-To, TV and TA have been selected for sixty cell line panel assays.

From Table \checkmark , Compound $\checkmark \checkmark$ exhibited a remarkable antitumor activity against Lung and Colon cancers cell lines NCI-Hoүү and HT^ү, with growth inhibition (GI) values of $\lor \land \circ \cdot$ and $\lor \pounds \pounds \lor \checkmark$, respectively. However, a moderate activity for the same compound was observed for Leukemia cell lines CCRF-CEM, RPMI- $\land \uparrow \uparrow \uparrow$, SR as well as Renal cancer cell line UO- $\urcorner \uparrow$, with GI values of $\exists \lor \land \uparrow \uparrow, \exists \lor \land \land \uparrow, \neg \lor \uparrow$, and $\exists \lor \circ \urcorner \checkmark$, respectively. Compound \P^{\sharp} showed highest activity against Leukemia cancer cell lines CCRF-CEM, MOLT- ξ , SR; Non-small cell lung cancer cell line NCI-H° \P^{\dagger} ; Ovarian cancer cell line IGROV¹, and Renal cancer cell line UO- \P^{1} , with GI values Λ^{1} . \degree^{1} , Λ^{4} . \P^{9} , Λ^{5} . \degree^{π} , Λ^{V} . 1Λ , Λ^{4} . \P^{5} , Λ^{1} . 9° , Λ^{V} . 1Λ ,

Beside the remarkable inhibitory activity against all cell lines of Leukemia, and the lethal effect against Lung cancer cell line NCI-H \circ YY (Table Y), compound \ref{o} exhibited a moderate activity against Lung cancer NCI-H \pm Y·; Colon cancer HTC-1)I, HTC-I \circ , SW-IY·; CNS cancer SNB-V \circ , UY \circ); Ovarian cancer IGROVI, OVCAR- \ref{r} ; Renal cancer CAKI-I, UO- \ref{r} ; Breast cancer T- \pounds VD with GI values of I \circ . \ref{r} , V \pounds .I, VYII, I. \ref{r} , II. $A\circ$, IV.I, II. $A\pounds$, VY.V, V \ref{I} , V \circ . \ref{I} , IA.V9%, respectively.

Compound $\forall \forall$ was found to be a highly active growth inhibitor of Leukemia cell lines CCRF-CEM and SR (GI%; ^\.oY, ^o. $\dot{\epsilon}$ o), and moderately active against Leukemia MOLT- $\dot{\epsilon}$, Colon cancer HCT- $\dot{\epsilon}$ and Renal cancer ACHN, CAK- $\dot{\epsilon}$ and UO- γ with GI values of $\forall \uparrow.\uparrow \land$, $\exists \uparrow.\circ \land$, $\exists \dot{\epsilon}.\cdot \circ$, $\exists \uparrow.\dot{\epsilon}\uparrow$, $\exists \uparrow.\exists\uparrow,$, respectively, however, it proved lethal effect to Lung cancer NCI-H $\circ\gamma\gamma$.

% Growth Inhibition (GI%) ^a							
Subpanel tumor cell lines	٣٣		٣ ٤	۳0	۳۷		
	۳۸						
Leukemia							
CCRF-CEM	18.98	<u> </u>	٩٠_٨٩	11.01	91.98		
$HL-1 \cdot (TB)$	27. • 5	VT_V2	AV TA	rv_0A	۸۹.٥٧		
K-011	97.01		01.4.	٨٠.٢٩	00.11		
MOLT- [£]	٥٨.•٨	٨٢ ٩٩	AY_AV	V1_9A	90.77		
Non-Small Cell Lung Cancer							
A°٤٩/ATCC	00.7.	٦٩ _. ٦٩	٥٣.٨٠	٤١.٣٩	٧٤٨٥		
HOP-77	-		27.91	٥٣.٦٠	TO. TI		
	71,79						
NCI-HYYY	-		ΨY_VV	۳۲.۱۰	14.41		
	Y0. V						
Colon Cancer							
COLOTIS	-		1 • <u>^</u>	10.01	14.1.		
	11.2.						
HCT-VV	01.72		V V AV	VZ.•1	0.21		
					74		
HCI-18	v z _ z 1		v v j •	V1.13	17.07		
CNIC C							
CNS Cancer	~~ \\		٦. ٤٦	07 WY	<u> </u>		
SF-1 W	VT_TT		(*_2)		20.01		
SNB-19	1		٤ ١ _. ٧٨	01.01	٤٠.11		
	٧٤.٠٥						
SNB- ^V °	۲۸.۰۳		77.1	77.10	٤١.١٨		
	٦٣_٢٨						
Melanoma							
LOX IMVI	22.15		05.40	09.12	29.21		
	٩٨.٢٨						
M١٤	14.47		57.51	٤0.09	T1.12		
	V1_A1						
MDA-MB-٤٣0	75.77		01.77	۳۹.۰۰	70.00		
	09.17						
SK-MEL-Y	-		81.75	٤٣.١٦	14.01		
	٦٨.١٠						
Ovarian Cancer							
IGROVI	08.21		N9.77	11,17	07.07		
	AE 77						
OVCAR-r	r. Av		0.11	VV_V •	TV_2 T		
	09.98			,			
OVCAR-2	20,97		04.0.	00.02	21.21		
	٧٢.١٩			4 - 1 4			
OVCAR-°	- 		-	1.04	11.41		
	14.17						
Renal Cancer			2		W		
Y A L- •	17,45		21.72	6A.1 Y	10.01		
	٨٨.٤٦						

Table (\mathbf{Y}): Percentage Growth inhibition (GI%) of <i>in vitro</i> Subpanel Tumor Cell Lines at \mathbf{Y} :	'M
Table (+). Tercentage Growth minibition (G1/6) of <i>in vitro</i> Subparter Funite Cen Entes at ++	TAT
Concentrations of Compounds ""-"", "" and ".	

ACHN $01,7\Lambda$ $VY,9V$ $09,7\Lambda$ 15.0 CAKI-1 $01,75$ $VY,07$ $VT,75$ 11.57 UO-T1 $01,75$ $VY,07$ $VT,75$ 11.57 UO-T1 $01,75$ $VY,07$ $VT,75$ 11.57 Prostate Cancer $01,70$ $01,70$ $0.0,77$ $19,77$ PC-T To,VT 0 $51,1V$ $T1.09$ DU-150 $19,70$ $59,\Lambda\Lambda$ $57,71$ $75,\Lambda$ Breast Cancer $V1,77$ $V1,77$ $V1,77$ $V1,77$ MDA-MB-YT1/ATCC $5\Lambda,7T$ $50,7V$ $00,9\Lambda$ $55,15$ HS $0V\Lambda T$ $ Y0,9T$ $Y1,7T$ $-$ BT-059 $YV,Y,$ $50,91$ $05,.0$ $TT1, V$	A٤٩٨	٣٤.٨٤	٤٠.٣٩	151.	-	
ACHN $\circ 1.7\Lambda$ $\vee Y.9V$ $\circ 9.7\Lambda$ $\tau \xi. \circ$ CAKI-1 $\circ 1.7\xi$ $\vee V.\circ7$ $\vee T.7\xi$ $\tau 1.\xi7$ UO-T1 $\tau T.\circ7$ $\Lambda 1.1\circ$ $\vee V.71$ $\tau 1.57$ UO-T1 $\tau T.\circ7$ $\Lambda 1.1\circ$ $\vee V.71$ $\tau 1.57$ UO-T1 $\tau T.\circ7$ $\Lambda 1.1\circ$ $\vee V.71$ $\tau 1.71$ Prostate Cancer $\tau V.\circ7$ \circ $\xi 1.1V$ $T 1.09$ DU-150 $19.7\circ$ $\xi 9.\Lambda\Lambda$ $\xi T.77$ $T \xi.\Lambda$ Breast Cancer $TT.^{0.7}$ $V.\Lambda$ $\xi 1.1V$ $T 1.09$ MDA-MB-YT1/ATCC $\xi \Lambda.771$ $\xi \circ.7 \cdot$ $\circ 0.9\Lambda$ $\xi \xi \xi$ HS $\circ V\Lambda T$ $ T 0.9T$ $T 1.77$ $-$ BT-0 $\xi 9$ $YV.Y.$ $\xi 0.91$ $\circ \xi \circ$ $TT.1.7$		۲۲ <u>.</u> ۸٦				
$\lambda \xi, \xi$ $O, \chi \xi$ $V, \gamma \chi$	ACHN	01.71	٧٢ ٩٧	09.71	75.00	
CAKI-1 $\circ_{1},1 \notin$ $\vee_{1},0 \uparrow$ $\vee_{1},1 \notin$ $\neg_{1},1 \uparrow$ UO-11 $\neg_{1},0 \uparrow$ $\vee_{1},0 \uparrow$ $\vee_{1},1 \uparrow$ $\neg_{1},1 \uparrow$ Prostate Cancer $\gamma_{1},0 \uparrow$ $\vee_{1},0 \uparrow$ $\vee_{0},1 \uparrow$ $\neg_{1},1 \uparrow$ PC-1 $\gamma_{0}, \vee_{1} \uparrow$ \circ_{1}, \cdot, \wedge $\varepsilon_{1},1 \vee$ $\Gamma_{1},0 \uparrow$ DU-1 ε_{0} $19,7 \circ$ $\varepsilon_{1}, 1 \vee$ $\Gamma_{1},0 \uparrow$ $\varepsilon_{1},1 \vee$ $\Gamma_{1},0 \uparrow$ Breast Cancer $\Pi_{1}, 1 \uparrow$ MDA-MB- $\Gamma_{1},1 \wedge$ $\Gamma_{1}, 1 \uparrow$ $\Sigma_{1}, 1 \uparrow$ $\Gamma_{1}, 1 \uparrow$ $\Gamma_{1}, 1 \uparrow$ $\Pi_{1}, 1 \uparrow$ HS $\circ_{1}, 1 \vee$ $I_{1}, 1 \uparrow$ BT- $\circ_{1}, 1 \uparrow$ $I_{1}, 1 \uparrow$ BT- $\circ_{1}, 1 \uparrow$ $I_{1}, 1 \uparrow$ <		AE 1 E				
$UO-r^n$ $\overrightarrow{11}, o_1$ $\Lambda 1, 1o$ Vo, r^n $\overrightarrow{19, 11}$ $Prostate Cancer$ r^n, q^n $o_1, \cdots, f_n 1, 1v$ r^n, q^n $PC-r$ ro, Vr $o_1, \cdots, f_n 1, 1v$ r^n, o_n $DU-1 fo$ $19, 1o$ $fq, \Lambda \Lambda$ fr, r^n $DU-1 fo$ $19, 1o$ $fq, \Lambda \Lambda$ fr, r^n $Breast Cancer$ rr, q, Λ fr, r^n fr, r^n MDA-MB- $rr^n/Arcc$ fr, r^n fo, r^n fo, qr^n r_1, r^n HS $ovAr$ $ ro, qr^n$ r_1, r^n $-$ HS $ovAr$ $ ro, qr^n$ r_1, r^n $-$ BT-off rv, r, fo, fo, qn off, o, rr, r, fo, qn off, o, rr, r, fo, qn	CAKI-	01.72	٧٧.0٦	٧٣.٦٤	71.27	
UO-" $TT. \circ T$ $A1.1\circ$ $V \circ TT$ $T1.1T$ Prostate Cancer $T \circ VT$ \circ $\$1.1V$ $T1.09$ PC-" $Y \circ VT$ \circ $\$1.1V$ $T1.09$ DU-1'so $19.7\circ$ $\$1.1V$ $T1.09$ Breast Cancer $TT. 0$ $\$1.1V$ $T1.09$ MCFV $V1.70$ $\$1.1V$ $T1.09$ MDA-MB-TT1/ATCC $\$A.T1$ $\$0.TT$ $\$0.94$ $\$1.1T$ $T9.1T$ MDA-MB-TT1/ATCC $\$A.T1$ $\$0.TT$ $\$0.94$ $\$1.TT$ $T1.TT$ MDA-MB-TT1/ATCC $\$A.T1$ $\$0.TT$ $\$0.94$ $\$1.TT$ $T1.TT$ MDA-MB-TT1/ATCC $\$A.T1$ $\$0.TT$ $\bullet0.94$ $\$1.TT$ $T1.TT$ HS $\circ VAT$ $ Y0.9T$ $Y1.TT$ $ Y0.9T$ $-$ BT-0 $\$9$ $YV.T$ $\$0.91$ $0.5.0$ $TT.1.7$ $ YV.T$ $\$0.91$ $0.5.0$ $TT.1.7$ $ YV.T$ $\$0.91$ $0.5.0$ $TT.1.7$		91.77				
Prostate Cancer $9^{m}.99$ PC-T Yo.VT \circ 51.1^{m} 71.09 DU-150 19.70 $59.AA$ 57.77 $75.A1$ Breast Cancer $7^{m}.9.$ 51.77 $75.A1$ MCFV $7^{m}.9.$ 55.71 51.77 79.51 MDA-MB-YT1/ATCC $5A.771$ $50.77.$ $00.9A$ $55.25.5$ HS $\circ^{m}AT$ $ 70.97$ $71.77.$ $-$ HS $\circ^{m}AT$ $ 70.97$ $71.77.$ $-$ WT.9.5 $70.97.$ $71.77.$ $ 70.97.$ $71.77.$ $-$ WO.5. $70.97.$ $71.77.$ $ 70.97.$ $71.77.$ $-$	UO- ^m	٦٣_٥٦	11.10	٧٥.٣٦	٦٩ _. ٦٦	
Prostate CancerPC-TYo.YT \circ $\pounds1.1Y$ $T1.09$ $oT\Lambda$ $oT\Lambda$ $\ell1.1Y$ $T\ell.\Lambda$ DU-16019.10 $\ell9.\Lambda\Lambda$ $\ellT.T1$ $T\ell.\Lambda$ Breast Cancer $TT.9\Lambda$ $0\ell.T1$ $\ell1.TT$ $T9.\ell1$ MDA-MB-YT1/ATCC $\ellA.T1$ $\ell0.T1$ $\ell1.TT$ $T9.\ell1$ HS $\circV\Lambda T$ $ T0.9T$ $T1.T1$ $-$ HS $\circV\Lambda T$ $ T0.9T$ $T1.T1$ $-$ BT-0 $\ell9$ $TV.Y$ $\ell0.91$ $o\ell.o0$ $TT.1$		٩٣.٩٩				
PC-" Y0.V" 0 $11.V$ 10.09 0 0 $11.V$ 10.09 0 0 $11.V$ 10.09 0 0 $11.V$ 10.09 0 11.00 11.00 11.00 11.00 Breast Cancer V V 11.00 11.00 11.00 MCFV V V 0 11.00 11.00 11.00 MDA-MB-VTV/ATCC 11.00 11.00 11.00 11.00 11.00 11.00 MDA-MB-VTV/ATCC 11.00 11.00 11.00 11.00 11.00 11.00 MDA-MB-VTV/ATCC 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 HS $0VAT$ $ 10.00$ 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 $11.$	Prostate Cancer					
$\begin{array}{ccccccccc} & & & & & & & & & & & & & & &$	PC-۳	10.VT	0	٤١ <u>.</u> ١٧	۳١_0٩	
$\begin{array}{ccccccccc} DU^{-1\xi\circ} & & 19.7\circ & \xi9.\Lambda\Lambda & \xi7.77 & 7\xi.\Lambda1 \\ & & & & & & & & & & & & & & & & & & $		٥٣. ٨				
Breast Cancer $T\xi_1T$ MCFV TT_1 MDA-MB-TT1/ATCC $\xi\lambda_1TT$ $KS \circ VAT$ FO_1TT HS $\circ VAT$ FO_1TT BT- $\circ\xi\eta$ TV_1T $KT_1 = TV_1 + V_1 + V_2 +$	DU-150	19.70	£9.AA	£7.77	WE 11	
Breast CancerMCFV $\begin{subarray}{cccccccccccccccccccccccccccccccccccc$		78.17				
MCFV $rr.q.$ $o \le 11$ $\varepsilon 1.7r$ $rq.\varepsilon 1$ MDA-MB- $rr1/ATCC$ $\varepsilon A.rr1$ $\varepsilon o.rr.$ $o o.qA$ $\varepsilon \varepsilon\varepsilon$ HS $orAr$ $r 0.qr$ $r1.rr1$ - HS $orAr$ $r 0.qr$ $r1.rr1$ - HS $orAr$ $r 0.qr$ $r1.rr1$ - $rr.v$ $rr.v$ - $rr.v$ BT-oseq $rv.r.$ $\varepsilon 0.q1$ $o \varepsilono$ $rr.1.$	Breast Cancer					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MCF ^v	۳۳۹۰	05.71	٤١.٦٣	39.51	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		۲١_٦٦				
٦٣.٩٨ HS ٥٧٨T - ٢٥.٩٣ ٢٦.٣٦ - ٣٨.٠٧ BT-٥٤٩ ٢٧.٢٠ ٤٥.٩١ ٥٤.٠٥ ٣٣.١٠ ٧٥.٤٠	MDA-MB-YT)/ATCC	٤٨.٣٦	٤0.5.	00.91	٤٤.٠٤	
HS °VAT - Y0.98 Y1.87 - 8T-029 YV.Y. 20.91 02.00 88.10 V0.20		٦٣_٩٨				
۳۸.۰۷ BT-٥٤٩ ۲۷.۲۰ ٤٥.٩١ ٥٤.٠٥ ٣٣.١٠ ٧٥.٤٠	HS OVAT	-	10.95	۲٦ ٣٦	-	
BT-029 TV.Y. 20.91 02.00 TT.I. Vo.2.		۳۸.۰۷				
٧٥.٤.	BT-029	۲۷.۲.	20,91	٥٤.٠٥	۳۳.۱۰	
		٧٥.٤.				
$T = \xi V D$ $\xi \Lambda_1 \Lambda_2 \Lambda_2 \Lambda_3 \Lambda_1 \Lambda_1 \Lambda_2 \Lambda_2 \Lambda_2 \Lambda_3 \Lambda_3 \Lambda_3 \Lambda_3 \Lambda_3 \Lambda_3 \Lambda_3 \Lambda_3 \Lambda_3 \Lambda_3$	T-€YD	٤٨.٨.	٦٧.٠٩	٦٨,٧٩	00.77	
٧٤.٤.		٧٤.٤.				
MDA-MB-271	MDA-MB-57A	٣٩.٠٥	05.15	05.17	۲۱.٤٣	
5 £ . 1 V		55.1V				

^a -, GI< \cdot , L, compound proved lethal to the cancer cell line.

On the other hand, compound $\forall h$ showed a moderate growth inhibitory activity against most of the other cell lines; Lung cancer $A^{\circ \xi q}/ATCC$, HOP- $\gamma \gamma$, Colon cancer SW- $\gamma \gamma \gamma$. CNS cancer SF-YIA, SF-Y90, SNB19, SNB-V0, U۲۰۱, Melanoma M۱٤, SK-MEL-۲, SK-MEL-°, Ovarian cancer OVCAR-٤, Renal cancer SNVC, Prostate cancer DU-V50, Breast cancer MCF-Y, MDA-MB-YTY/ATCC, BT-off, T- ξ VD with GI values of $\forall \xi \land 0$, $\forall 1, \forall 9, \forall \xi, \forall V$. ν٣.٣٢, ٦٨.٧٨, ٧٤.٠٥, ٦٣.٢٨, ٧٦.٥٧, ٧٦.٨١, 1. 1. VO. TA, VY. 19, VY. 22, 12.11, V1.11, 17.9Λ , $Vo. \varepsilon$, $V \varepsilon. \varepsilon \cdot \lambda$, respectively. These compounds were further undergo five dose testing which are illustrated in Table ^r. From Table \mathcal{T} , we can conclude that, compounds \mathcal{T}° . $\forall \forall$ and $\forall \land$ showed broad-spectrum anti-tumor activity against nearly all 7. cell lines used in this study, and demonstrated significant activity in the in vitro anti-tumor screening expressed by MG.MID \log_1 . GI., value of $-\circ.5\circ, -\circ.1\%$ and $-\circ$.^{$\mathcal{T}\Lambda$}, respectively.

The data in Table $\[mathbb{"}\]$ showed that compound $\[mathbb{"}\]$ possessed a significant activity on Leukemia cell line (CCRF-CEM), Non-small cell Lung cancer cell line (NCI-Horr) and Renal cancer cell line (UO-7) with log GL_o. values -7.17, - 7.5° and -7.7° , respectively. Furthermore, compound *"°* was found to be highly active growth inhibitor of all Leukemia cell lines, Non-small cell lung cancer cell line HOP-97. Colon cancer cell lines HTC-117, HTC-10, SW-77, where the MG-MID ranged from -•.•• to -•. \wedge •. Compound $\forall \forall$ is highly active growth inhibitor of Leukemia cell lines CCRF-CEM, MOLT-[£], SR, Non-small cell Lung cancer cell line NCI-Horr, Renal cancer cell lines CAKI-1, UO-") at MG-MID range from - \circ . \circ . to $-\circ$. \wedge . Compound \forall is highly active growth inhibitor of all Leukemia cell lines, Non-small cell lung cancer cells Aot ATCC, HOP-97, NCI-Horr, Colon cancer cell line HCT-1°, where the MG-MID ranged from -°.°∙ to -°.[∨]°.

Panel cell line	Re	sponse j	paramet	ters (A)	<u>log, GI</u>	<u>, (B) lo</u>	<u>g</u> <u>TGI,</u>	$(C) \log_{10}$. <u>LC</u> ,	and MC	<u>.</u>
	Com	ound "	É (Compou	nd 🔻 o	Co	mpound	۳۷	Comp	ound 🖷	۸
	A	B C		A B	С	A	В	С	A	В	C
Lackomia		-			-			-			
CCRF-CEM	-£.1• -٣.	17 >-7.	۳۰_٦	.17 _2	۹۸ >-٤.	0_^1	-£.Vo	>-٤.٤٨	_0 _. 70	_07	>-
۲.۰۰ HL-٦٠(TB)	_~~_~~_~	.•έ >-1	í. r. -	0.07 _0	.•• >-٤	o _. .	۸ <u>-</u> ٤ _. ٦٢	>-٤.٤٨	_0 _. 0£	_0 <u>.</u> •Y	>-
K-077	-T-VA >		۲.۳۰ -	-< ۲۰.٥	٤.۰۰ >-٤	0.70	>-٤.٤٨	>-٤.٤٨	_0 <u>.</u> ٤٦	-£.V•	>-
έ.·· MOLT-έ	_۳,۸۹ _۰	۳.•۸ >-	۲.۳۰ ـ	.o./) _:	E.V1 >-8	0,7	٤ >-٤.٤/	× >-٤.٤٨	_0 _, 71	- 5 5 9 1	>-
٤ PDMI ۸۲۲٦	٣ ٧١	Y VV - 1	۲ ۳.	0 07	<u> ۲</u> ۲ ,	<i></i> 01	10 - 4 4	٨ < 4 4 ٨	. 0 TV	5 9V	
۲۲ IVII-//// ۲		1.11 >-				.		>			-
Non-small cell li	ung cance	er									
A٥٤٩/ATCC ٤.٣٠	_٣ <u>.</u> 0٦	>-٢.٣٠ >	<u>-۲</u> ۳۰	_0,70	-2.79 >	_££	.99 >-2.2	٤٨ >-٤.٤	∧ _0 <u>.</u> 0£	_£_\£	-
HOP-۲۲ ٤ ۳۰	-۳.0٩	-7.77 >	>-Y. [.]	_0.7£	-2.0. >	_ź.•• _c	¢.•° >-έ.	$\xi \Lambda >_{-} \xi$.	٤٨ _٥.٣	ς -ξ [.] λο	-
HOP-۹۲	_٣ <u>.</u> ٩٤	_Y_9A >	>-Y. ^w	-0.71	-07 >	-ź.·· -	0.77 -2.0	×∧ >-٤.	٤٨ _٥,٥	°Y _0.•€	-
Colon cancer											
HCT-10 ٤.٠٤	_٣ <u>.</u> ٨٢	>-1.4.	>-٢.٣٠	_0 _. 0 •	>-٤>	>-٤	0.11 >-2	.έΛ >-έ	.٤٨ _0.	02.72	-
HT۲۹ ٤ ፕለ	_٣ <u>.</u> ٢٤	_Y _. 70	>-7.7.	_0 <u>.</u> ۲۳	_£.٣٦	_£.•9 _	έ.V٣ >-έ	. ٤٨ >-٤	. ٤٨ _٤	.98 - 5.31	-
KMVY	_٣ <u>.</u> 0.	۲.٨٤	>-7.7.	-0.1.	-£.0V	>-٤	-£.AA >-£	.٤٨ >-٤	.£A _0	. TV _£. TV	′ -
CNS cancer											
SF-77A ٤.79	٣.٨٤	_Y_A٦	>-۲.۳۰	_0 _. 0Y	_£.0 •	>-2.**	_°.۲۰>-8	£.£A >-8	£.£A _0	, 20 <u>-</u> 2.1	ι_
SF-790 5.78	_٣ <u>.</u> ٢٦	_۲ <u>.</u> ٤٨	>-۲.۳۰	_0 _. 17	_£.٢٦	>-٤	-£.V9>-	٤.٤٨ >-٤	έ. έλ _ έ	.95 _5.0/	۰ -
SNB- ^Y °	-٣.٧٩	-۲.٤٠	>-7.7.	_0 <u>.</u> VY	>-٤	>-٤	-°.۲・>-	٤.٤٨ >	٤.٤٨ _٥	¢.٤٩_٤.٧	٦_
Melanoma LOX IMVI	_٣ <u>.</u> ٧٦	_٣ <u>.</u> •٩	_Y_£٦	_0 _. ٤٤	_£_£9	>-٤	-0.1A>	-£.£A >-	٤.٤٨ -	٥.٣٧-٤.٨	۰ -
MDA-MB-27	۰ _{-۳.} ۰۸	_1 <u>.</u> 0٣	>-۲.۳۰	_0.70	_£.70	>-٤	_°.•٦>	-٤.٤٨ >-	.٤.٤٨	_0,0•_£.A	ίξ _
SK-MEL-YA	_٣ <u>.</u> 07	>-7.7.	>-7.7.	_0 _. 1£	_£.77	>-٤	_٤.ΛΛ>	>-٤.٤٨ >-	. ٤ . ٤ ٨	_0.22_2.V	·• _
SK-MEL-°	_٣ <u>.</u> ٧١	_٣ <u>.</u> .0	۲.٤٥-	<u></u> ٤٤	_£_٦٨	_£_•٦	_0.77	>-2.21 >-	-£.£A	_0.77_£.9	17 _
<i>2.21</i> Ovarian cance	er.										
IRGOV) ۲.۹٦	_٣ <u>.</u> ٧٤	_٣ <u>.</u> •٣	>-۲.۳۰	-0 [.] 01	_٤ _. ٦٨	>-٤	-0.1V	>-٤.٤٨>-	-£_£A	_0 _. 77 _0.	۹_
	-7.20	_0_£V	- ٤. ٨٦	-£.•٣	- 2 9 1	>-٤.٤٨	>-2.21	1_0_7.	£.V£	- ٤.٣١	
OVCAR-٤	_٣.٦٥	-۲٫۲۰	>-1.7.	_0.07	_£_Yź	>-٤	_0_1 £	>-2.24>	>-£.£A .	-0.77 - ٤.:	٤٤>-
· OVCAR-°	-٣ <u>.</u> • ź	>-7.7	>-7.7	-£.V£	_£_٣٢	>-٤	> - ٤.٤٨	>-2.24	>-٤.٤٨	-٤.٨٣ -٤.	٤٤ _
Renal cancer											

Table ($^{\circ}$): Inhibition of *in vitro* cancer cell lines by selected thiazole carboxamide derivatives $^{\psi_{\xi}}$, $^{\varphi_{o}}$, $^{\psi_{V}}$ and $^{\psi_{A}}$.

MG_MID	-5.10	-7.77	-1.61	-0,20	- 2. 2 *	-2	-0.17 -2.0 -2.27 -0.77.2.73	-
٤ <u>.</u>				• / -	,	, <u> </u>		
T-£∨D	_٣_٩٢	_٣.١٧	>-۲.۳۰	_0 _. ٦٣	_£_7£	>-2. • •	_0.YN >=£.£N>=£.£N _0.0£=£.YT>=	
٤.٢٣	•	•		·				
MDA-MB-YTY/ ATCC	_ 7 10	_7 0.	>-7 %.	_0 A.	- ٤ ٦ ١	>-2	-0 29 >-2 24>-2 24 -0 21-2 29 -	
٤								
Breast cancer MCF ^V	_٣.٤٦	>-7.7.	>-۲.۳۰	_0.77 >	۰ ٤ _. ۰۰	>-٤	-£.9V >-£.£A>-£.£A -0.Y7-£.Y7>-	
٤٠٣٩			/			/		
Prostate cancer	٣٦١	۲ ۷۳		019		< ' · ·	0.7 ~ 5 51~ 5 51 0 40 5 1.	
UO- 31 2. 77	_£_٣•	_٣ <u>.</u> ٢٤	>-٢.٣٠	_7 <u>.</u> 77	-£.V1	>-٤	-0.74 >-2.24 >-2.24 -0.72-2.94 -	
٤.٣٠	_,,,,		/			<i>/</i> .		
SNUC	_٣ V٦	-7 27	>-1 5.	_0 0.	-2 07	>-2	-0 17 >-2 21 >-2 21 -0 22 -2 11 -	
κλΓ''''	-1.17	-'.''	>-1.14	_0,20				
DYE MIM	۳ V ۸	۳.۳		0 4 0	5 V)	۶	014 544 54 047 444	

MG_MID = mean graph midpoint = arithmetical mean value for all tested cell lines.

Conclusion

In conclusion, compounds **"**°, **"**V and **"**A -the most active member of this study- exhibited remarkable activity against most of sixty cell lines. All selected compounds possessed selective remarkable activity towards all

Leukemia cell lines, Lung cancer cell line NCI- $H^{\circ \Upsilon \Upsilon}$, and Renal cancer cell line UO- Γ^{Υ} . The incorporation of galloyl functional groups as well as substitution of the aryl group in Υ -position of thiazole moiety with suitable functionalities would led to more potent and selective antitumor agent.

Experimental

Synthesis of Y-amino-[£]-arylthiazoles (\a-d)

^Y-Amino- \pounds -arylthiazoles **\a-d** were synthesized according to ref. [\]. ^Y-Amino- \pounds phenylthiazole (**\a)**, m.p. **** \pounds° - \neg° C [Lit. ^YA, **** \pounds^{\uparrow} -**** \uparrow° C; Lit. ^YA, **** \pounds^{\mp} - \pounds° C]; ^Y-amino- \pounds -(pmethoxyphenyl)thiazole (**\c)**, m.p. ^Y· \neg° - \circ° C [Lit. ^YA, ^Y· \circ - \uparrow · \neg° C]; ^Y-amino- \pounds -(ptolyl)thiazole (**\b)**, m.p. **** μ^{Y} \circ° C [Lit. ^YA, **** μ^{T} -**** μ^{Y} \circ° C]; ^Y-amino- \pounds -(pchlorophenyl)thiazole (**\d)**, m.p. **** μ° -**** μ^{Y} \circ° C [Lit. ^YA, **** μ^{T} -**** μ^{Y} \circ° C].

\$-Methoxy-N-(\$-phenyl-thiazol-``-yl)benzamide (``)

Compound \forall was obtained from the reaction of \mathbf{a} with \mathbf{a} to yield \mathbf{a} , \mathbf{a} , white crystals; IR, \mathbf{v}_{max} cm⁻¹ = \mathbf{a} , \mathbf{a} ,

Synthesis of $(, \xi)$ -trimethoxy-N-(ξ -phenyl-thiazol-(, y)-benzamide ((, y))

Compound 11 was obtained from the reaction of 1a with ${}^{\circ}c$ to yield $\cdot \circ \circ g$, white crystals; IR, $v_{max} \ cm^{-1} = {}^{\forall \uparrow} \cdot \cdot (NH)$, $1 \vee \wedge {}^{\forall} (CO)$; H NMR ($\cdot \cdot \cdot MHz$, $CDCl_r$) $\delta \vee {}^{\vee} \circ (d, {}^{\vee}H, J = \wedge {}^{\vee}Hz, aryl-H)$, $\vee {}^{\uparrow} \circ (t, {}^{\vee}H, j = \wedge {}^{\vee}Hz, aryl-H)$, $\vee {}^{\cdot} \cdot {}^{\circ} (t, {}^{\vee}H, j = \wedge {}^{\vee}Hz, aryl-H)$, $\vee {}^{\cdot} \cdot {}^{\circ} (t, {}^{\vee}H, j = \wedge {}^{\vee}Hz, aryl-H)$, $\vee {}^{\cdot} \cdot {}^{\circ} (s, {}^{\vee}H, thiazole-H)$, $\vee {}^{\cdot} \wedge {}^{\circ} (s, {}^{\vee}H, thiazole-H)$, $\vee {}^{\circ} (s, {}^{\circ}H, thiazole-H)$, $\vee {}^{\circ} (s, {}^{\circ}H, thiazole)$, $\vee {}^{\circ} (s, {}^{\circ}H, thiazole-H)$,

Synthesis of acetic acid ξ -(ξ - *p*-tolyl -thiazol- γ -ylcarbamoyl)-phenyl ester (γ) MJMR, Vol. Yo, No. $\gamma, \gamma \gamma \gamma \xi$, pages ($\gamma \gamma \gamma \gamma \gamma$). al.,

Compound <code>``</code> was obtained from the reaction of <code>`b</code> with <code>`d</code> to yield <code>...</code>^rV^g, white crystals; IR, v_{max} cm^{-'}= <code>"±°·, "``</code> (NH), <code>````</code>A, <code>```````</code> (CO); H NMR (±·· MHz, CDCl_r) δ ^V.^A^q (d, [`]H, J= ^A.[±] Hz, aroyl-H), ^V.[`]' (d, [`]H, J= ^A.[±] Hz, aryl-H), ^V.[`]` (d, [`]H, J= ^A.[±] Hz, aroyl-H), ^V.[`]" (d, [`]H, J= ^A.[±] Hz, aryl-H), ^V.[•]° (s, [`]H, thiazole-H), [`].["] (s, ["]H, Me), [`].[`]" (s, ["]H, OAc); MS (EI) *m*/*z* ^{"°"} (MH⁺, [`])^q/.). Anal. (C1³H₁1NrOrS)

Synthesis of acetic acid ⁷,⁷-diacetoxy-[£]-([£]phenyl-thiazol-⁷-ylcarbamoyl)-phenyl ester (⁷[°])

Compound **Y**^T was obtained from the reaction of **\a** with **Yf** to yield $\cdot \cdot \varepsilon \circ {}^{7}$ g, white crystals; IR, v_{max} cm^{-\)}= **Y**^T $\cdot {}^{9}$, **Y**^{\)} $\cdot \cdot$ (NH), **\YYA**, **\TA** (CO); H NMR ($\varepsilon \cdot \cdot$ MHz, CDCl_T) δ **Y**.**Y**^Y (d, **YH**, J= $\wedge {}^{7}$ Hz, aryl-H), **Y**.**T** \wedge (s, **YH**, aroyl-H), **Y**.**T** ϵ (t, **YH**, J= $\wedge {}^{7}$ Hz, aryl-H), **Y**.**T** \circ (t, **\YH**, J= $\wedge {}^{7}$ Hz, aryl-H), **Y**.**Y** \circ (t, **\YH**, J= $\wedge {}^{7}$ Hz, aryl-H), **Y**.**Y** \circ (t, **\YH**, J= $\wedge {}^{7}$ Hz, aryl-H), **Y**.**Y** \circ (s, **YH**, thiazole-H), **Y**.**Y** ϵ (s, **^{9}**H, **T** OAc); MS (EI) $m/z \ \varepsilon \circ \circ$ (MH⁺, **Y** $\circ \%$). Anal. (C_{YY}H₁ \wedge N_YO_YS) C, H, N.

Anticancer activity

The methodology of the NCI anticancer screening has been described in detail else-where (http://www.dtp.nci.nih.gov)^[17].

References

- N.R. Shiradkar, K.K. Murahari, H.R. Gangadasu, T. Suresh, C.A. Kalyan, D. Panchal, R. Kaur, P. Burange, J. Ghogare, V. Mokale, M. Raut, Bioorg. Med. Chem. Lett. 10 (1000) 8999-2000.
- ^{γ}. S.K. Bharti, G. Nath, R. Tilak, S.K. Singh, Eur. J. Med. Chem. $\frac{\xi \circ (\gamma \cdot \gamma \cdot) \gamma \circ \gamma - \gamma \gamma \cdot}{\gamma \circ \gamma - \gamma \gamma \cdot}$.

- T. Nishimura, T. Ino, M. Mitsuya, M. Bamba, H. Watnabe, D. Tsukahara, K. Kamata, K. Sasaki, S. Ohyama, H. Hosaka, M. Futamura, Y. Nagata, J. Eiki, Bioorg. Med. Chem. Lett. 19 (۲۰۰۹) 1704-1774.
- T. Ino, D. Tsukahara, K. Kamata, K. Sasaki, S. Ohyama, H Hosaka, T. Hasegawa, M. Chiba, Y. Nagata, J. Eiki, T. Nishimura, Bioorganic. Med. Chem. ¹V (^Υ··⁹) ^ΥV^Ψ^Γ·^Υ^ε^Υ.
- T. Ino, N. Hashimoto, T. Hasegawa, M. Chiba, J. Eiki, T. Nishimura, Bioorganic. Med. Chem. Y. (Y.Y.) 1719-1777.
- W. Mao, M. Ning, Z. Liu, Q. Zhu, Y. Leng, A. Zhang, Bioorganic. Med. Chem. Y. (Y.)Y YAAY_YANY.
- V. N. Ye, X. Xu, F. Li, M. Ning, Z. Liu, Y. Cao, Y. Leng, A. Zhang, Tetrhedron Lett. or (Y.)Y) EVTA-EVEY.
- A. E.W. van Tilburg, P.A.M. van der Klein, M. De Groote, M.W. Beukers, A.P. Ijzerman, Bioorg. Med. Chem. Lett. 11 (1...) 1.14-1.19.
- A. Borghini, D. Pietra, P. Domenichelli, A.M. Bianucci, Bioorganic. Med. Chem. 1r (1...) orr._orry.
- Y. R.C. Schnur, R.J. Gallaschun, D.H. Singleton, M. Grissom, D.E. Sloan, P. Goodwin, P.A. McNiff, A.F.J. Fliri, M. Mangano, T.H. Olson, V.A. Pollack, J. Med. Chem. ^r² (1991) 19Yo-19AY.
- ۱۱. Y. Kumar, R. Green, K.Z. Borysko, D.S. Wise, L.L.Wotring, L.B. Townsend, J. Med. Chem. ۳٦ (۱۹۹۳) ۳۸٤٣-۳۸٤٨.
- YY. Data concerning the NCI screening methods in detail are accessible from the NCI via the Internet from the following address

http://dtp.nci.nih.gov/branches/btb/ivclsp.html.